Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Allergy ; 78(6): 1639-1653, 2023 06.
Article in English | MEDLINE | ID: covidwho-2223224

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome corona virus (SARS-CoV-2) infection frequently causes severe and prolonged disease but only few specific treatments are available. We aimed to investigate safety and efficacy of a SARS-CoV-2-specific siRNA-peptide dendrimer formulation MIR 19® (siR-7-EM/KK-46) targeting a conserved sequence in known SARS-CoV-2 variants for treatment of COVID-19. METHODS: We conducted an open-label, randomized, controlled multicenter phase II trial (NCT05184127) evaluating safety and efficacy of inhaled siR-7-EM/KK-46 (3.7 mg and 11.1 mg/day: low and high dose, respectively) in comparison with standard etiotropic drug treatment (control group) in patients hospitalized with moderate COVID-19 (N = 52 for each group). The primary endpoint was the time to clinical improvement according to predefined criteria within 14 days of randomization. RESULTS: Patients from the low-dose group achieved the primary endpoint defined by simultaneous achievement of relief of fever, normalization of respiratory rate, reduction of coughing, and oxygen saturation of >95% for 48 h significantly earlier (median 6 days; 95% confidence interval [CI]: 5-7, HR 1.75, p = .0005) than patients from the control group (8 days; 95% CI: 7-10). No significant clinical efficacy was observed for the high-dose group. Adverse events were reported in 26 (50.00%), 25 (48.08%), and 28 (53.85%) patients from the low-, high-dose and control group, respectively. None of them were associated with siR-7-EM/KK-46. CONCLUSIONS: siR-7-EM/KK-46, a SARS-CoV-2-specific siRNA-peptide dendrimer formulation is safe, well tolerated and significantly reduces time to clinical improvement in patients hospitalized with moderate COVID-19 compared to standard therapy in a randomized controlled trial.


Subject(s)
COVID-19 , Dendrimers , Humans , SARS-CoV-2 , RNA, Small Interfering , Treatment Outcome , Peptides/therapeutic use
2.
Allergy ; 76(9): 2840-2854, 2021 09.
Article in English | MEDLINE | ID: covidwho-1175022

ABSTRACT

BACKGROUND: First vaccines for prevention of Coronavirus disease 2019 (COVID-19) are becoming available but there is a huge and unmet need for specific forms of treatment. In this study we aimed to evaluate the anti-SARS-CoV-2 effect of siRNA both in vitro and in vivo. METHODS: To identify the most effective molecule out of a panel of 15 in silico designed siRNAs, an in vitro screening system based on vectors expressing SARS-CoV-2 genes fused with the firefly luciferase reporter gene and SARS-CoV-2-infected cells was used. The most potent siRNA, siR-7, was modified by Locked nucleic acids (LNAs) to obtain siR-7-EM with increased stability and was formulated with the peptide dendrimer KK-46 for enhancing cellular uptake to allow topical application by inhalation of the final formulation - siR-7-EM/KK-46. Using the Syrian Hamster model for SARS-CoV-2 infection the antiviral capacity of siR-7-EM/KK-46 complex was evaluated. RESULTS: We identified the siRNA, siR-7, targeting SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) as the most efficient siRNA inhibiting viral replication in vitro. Moreover, we showed that LNA-modification and complexation with the designed peptide dendrimer enhanced the antiviral capacity of siR-7 in vitro. We demonstrated significant reduction of virus titer and lung inflammation in animals exposed to inhalation of siR-7-EM/KK-46 in vivo. CONCLUSIONS: Thus, we developed a therapeutic strategy for COVID-19 based on inhalation of a modified siRNA-peptide dendrimer formulation. The developed medication is intended for inhalation treatment of COVID-19 patients.


Subject(s)
COVID-19 , Dendrimers , Animals , Antiviral Agents , Humans , Peptides/genetics , RNA, Small Interfering/genetics , RNA, Viral , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL